CloudAffinity: A Framework For Matching
Servers to Cloudmates

Marcos D. Assungdo, Marco A. S. Netto, Brian Peterson
Lakshminarayanan Renganarayana, John Rofrano, Chris Ward, Chris Young

IBM Research

{marcosda, mstelmar} @br.ibm.com, {blpeters,Irengan,rofrano,cw1,ccyoung}@us.ibm.com

Abstract—Increasingly organizations are considering moving
their workloads to clouds to take advantage of the anticipated
benefits of a more cost effective and agile IT infrastructure. A key
component of a cloud service, as it is exposed to the consumer, is
the published selection of instance resource configurations (CPU,
memory, and disk). The number of instance configurations, as
well as the specific values that characterize them, form important
decisions for the cloud service provider. This paper explores
these resource configurations; examines how well a traditional
data center fits into the cloud model from a resource allocation
perspective; and proposes a framework, named CloudAffinity,
aimed at selecting an optimal number of configurations based on
customer requirements.

I. INTRODUCTION

In an effort to reduce IT capital and operational expendi-
tures, organizations of all sizes are moving their workloads to
the cloud. Clouds come in many shapes and sizes, but share a
common foundational technology, virtualization. Virtualization
provides the ability to host multiple distinct operating systems
on a single hardware unit. This along with a well defined
interface (graphical or programmatic) allows cloud customers
to freely allocate, deallocate and consume the underlying
computing capacity.

This change in IT strategy risks replicating traditional
physical IT challenges (i.e. underutilized servers and physi-
cal sprawl) to virtual challenges (overprovisioning of virtual
resources and image sprawl [1]). Providers of cloud services
must be cognizant and careful not to repeat the same mistakes
in the virtualized world. Strong governance and well defined
interfaces are a needed to ensure that the “mess” is kept outside
the cloud.

In order to reduce this risk, cloud providers have currently
taken an approach which simplifies the IT experience. One
example of this approach is the practice of the cloud provider
publishing a limited set of virtual hardware combinations from
which the consumer must select. This approach is a far cry
from the current state of procuring a physical server and
the multitude of configurations available for selection. This
paper refers to the combination of virtual CPU, memory, and
disk as a virtual resource template (VRT) or just template.
The concept is distinct from the software stack which is run
within the resource container and is commonly referred to
as a virtual machine template, golden image, clone source or
master image.

The ability for a customer to rapidly deploy new workloads
via new cloud instances is a key selling point of cloud and
virtualization. However, for this to be a reality customers must
find an appropriate set of templates that meet the minimum
requirements of their application workload; including non-
functional requirements such as speed, robustness, and scal-
ability. This selection process is largely manual and expects
customers to tediously iterate through many choices to find
the one most suitable for their needs.

This paper examines hundreds of servers within a real
enterprise data center and investigates the cost implications of
migrating their associated workloads into a cloud. The server
configurations are considered as an aggregate of a specific
workload’s minimum requirements. The workload represents
an entire stack including the operating system, middleware,
application, and the supporting non-functional requirements
(e.g. ability to perform x transactions per second). Using the
same data set, we propose a method to evaluate the optimal
number of templates required to minimize the excess resource
allocations associated with the standard cloud approaches of
small, medium and large. More specifically, the contributions
of the paper are:

o Exploration of a challenge faced when moving a large
workload into a cloud with a fixed set of virtual resource
templates;

« Evaluation of the matching of an enterprise workload into
a well known public cloud (Amazon’s EC2), which con-
siders costs due to overprovisioning. The evaluation raises
awareness that there are implications of the state of the
art (small, medium, and large) and many improvements
must be realized before cloud can be a utility;

o A framework, called CloudAffinity, aimed at finding an
optimal set of virtual resource templates that can meet
the requirements of an existing data center.

The solutions, results, and discussions presented in this pa-
per can be leveraged by researchers and practitioners working
on the cloud computing space, in particular on management
of VM templates.

Server Requirements

Virtual Resource Templates

6CPU a Over Provisioned " 1cPU

i i 2GB M
SR1 12GB Me_mli)ry PN tgg;UMem 100G Disk..
500GB Dis H \ +350GB Disk > CPU

Fig. 1.

6GB.Memory..
: 8CPU
. 12GB Memory
| 850GB Disk

N
VRT3

Traditional template lifecycle. On the left-hand-side multiple server requirements define the existing servers within a data center. An optimal image—

defined by at least the existing requirements with the least amount of waste—is selected and the delta is calculated to represent the amount of over provisioned

resources.

II. PROBLEM DESCRIPTION AND METRICS
A. Problem description

Organizations are familiar with the process of sizing and
procuring server hardware to meet the needs of a specific
workload. This process involves tasks such as selecting ven-
dors, hardware architecture, amount and type of CPU, mem-
ory, and disks. However, this build-to-order model has changed
with the advent of the cloud. Cloud abstracts the underlying
complexity of the infrastructure and only exposes a simplified
view to the consumer. The current manifestation of this is seen
with the concept of small, medium, and large cloud templates
(Figure 1). This abstraction allows the cloud to provide a level
of simplicity akin to ordering a fountain pop at a fast-food
chain. However, this approach also implies that workloads
scale uniformly across CPU, memory, and disk bounds.

Table I summarizes virtual resource templates offered by
cloud providers, highlighting the significant variation between
the number of templates offered and the specific parameters
for each template. For instance, Amazon EC2 offers additional
templates geared towards workloads with disproportionate
CPU and memory requirements. Many factors motivate these
variations and are ultimately determined by the cloud con-
sumer and cloud provider. For example, cloud consumers are
concerned with allocating the fewest resources necessary to
keep costs to a minimum and still meet the requirements
of the workload. Consumers are also interested in having
an easy and effective way to search for the best template
based on their unique requirements (this problem is similar
to finding an appropriate image [3]). From the cloud provider
perspective, the goal is to offer the most appropriate options
for the consumer without creating unnecessary overhead and
complexity (hundreds or thousands of CPU, memory, and
disk combinations would force an evaluation of the word
“template”).

These challenges highlight the need for cloud providers to
have a method to derive the optimal set of templates for a
given workload. In a public cloud environment this workload

may be ill-defined and hard to measure due to the diversity
of consumers and uses. However, in the scenario that an
organization is internally looking to move workload into a
private cloud, there is necessary access to the existing server
configurations which can be used to influence the selection of
templates. In both models defining templates is crucial to the
success of cloud and the ability to migrate existing workloads
into it with minimal overprovisioning.

B. Metrics

The effectiveness of the matching algorithms evaluated in
the creation of this paper was measured against the following
set of metrics:

e Cost: amount (in dollars) paid to maintain a cloud
instance based on a given resource template;

o Euclidean distance: distance between two template def-
initions. In our case we consider CPU, memory, and disk
to calculate the distance between the provider’s template
and the user’s requirements;

o Matching factor: Difference (percentage) between the
user’s requirements and what the template has to offer,
for each virtual resource (CPU, memory, disk).

III. MOTIVATION SCENARIO

The to-be migrated workload analyzed here is based on
a set of server configurations from a real data center. This
data center requires that all workloads submit a detailed
document of server requirements (software and hardware).
These requirements are ultimately used by the various deliv-
ery teams to procure and provision the necessary hardware
and software configurations. This freedom generates a set of
configurations that cannot be re-utilized by other users due to
their fine grained specifications. Clearly this scenario results in
minimal overprovisioning of resources as users are provided
with exactly what they require. This contrasts with the cloud

TABLE I
CLOUD PROVIDER VIRTUAL RESOURCE TEMPLATES.

*
Cloud Provider Template
micro small medium large extra-large

Amazon EC2! A613/0** 1/2/160 4/7/850 8/15/1690
Softlayer CloudLayer? 171725 1/1/100 2/2/100 4/4/100 8/8/100
OpSource Cloud?® 1/2/80 2/4/160 8/16/640
IBM Research Compute Cloud [2] 1/1/18 2/2/36 4/6/72 4/12/72
*Templates are defined by: number of CPUs/memory (GB)/disk (GB).
**The micro instance within Amazon does not define a specific amount of CPU.
1 http://aws.amazon.com/ec2/instance-types/
2http://www.softlayer‘com/cloudlayer/computing/
3http://www.opsource.net/Services/Cloud—Hosting/Pricing

approach where each of these workloads would certainly not

fit perfectly within a small set of templates. In this context,

we envision providers asking customers for exactly what they Unknown

want and then provisioning from a known selection. As time
progresses and the number of requests increases, providers will
be able to make better instance types available for customer
selection. As well, this could be seen from the perspective
of a third party value-add provider who would broker the
requirements of customers and clouds to help effectively match
workloads and influence the destination configurations.

In order to evaluate this trade-off between flexibility and
resource waste, as a motivating scenario, we first analyze how
well the workload fits into the current set of Amazon EC2
templates (referred to as Instance Types by Amazon).

A. Workload overview

The data set used in this paper involves a selection of 747
enterprise server configurations, which include specifications
for CPU, memory, and disk. All server requirements are based
on the same operating system and hardware platform to rule
out differences not attributable to the workload. The docu-
mented server requirements span a three year time period and
have all been collected with the same tool, providing consistent
and comparable specifications. Figure 2 shows the general
breakdown of the existing servers by workload classification.

This data set accurately represents the underlying hardware
resources which are required to support a large number of
enterprise workloads. Migrating these workloads to a cloud
involves instantiating templates that cover the needs of all
of the existing servers. This is an accurate scenario for an
organization who is looking to move their workload into a
private cloud (same hardware architecture, same operating
system, and same organization). However, due to the variations
in used configurations and the size of the data set, it could also
be considered as a general representation of cloud candidate
workloads.

B. Workload migration into Amazon’s EC2 templates

Two Euclidean distance based approaches were used to
compare the enterprise server requirements and Amazon EC2

31%

Applications

30% Web
1%
App+DB
6%

Fig. 2. Workload classifications for each server. “Unknown” represents server
requirements that do not include any software specifications.

templates. The first approach is strict, and only looks for Ama-
zon EC2 instances that can meet all the server requirements.
The second approach, called flexible, considers instances that
do not meet all the server requirements. We also looked at the
distance considering two (CPU and memory) and three (CPU,
memory, and disk) server requirements. The disk values were
excluded from the two server requirement sets due to their
relatively large magnitudes and the impact that created for the
comparison.

Figures 3 (a) and (b) present the number of server re-
quirements that can be mapped to an Amazon EC2 template
using two and three comparison parameters respectively. Both
figures show that there is a considerable difference between the
strict and flexible approaches. The difference is due to the fact
that the instance templates cannot have a direct match against
the server requirements. By considering disk as a comparison
parameter, it is noticeable that the main difference occurs
with instances that have higher computing power capabilities.
The results are more visible for the matching factor metric
(Figure 4); a metric that shows the difference between the
server requirements and Amazon templates for each hardware
requirement where disk plays an important factor for the
comparison.

B Strict [Flexible

500
2]
5 400
9]
3 300
2
o« 200
[$)
g 100
g 0 l:l —_ ﬂ — -—)
=z high-memx2 high-mem high-memx4 high-cpu

small high-cpu-x large extra-large
Instances
(a) CPU and memory as comparison parameters.
B Strict [Flexible

800
§2]
@ 600
=]
8 400
o
° 200
8
g 0 L. — [E— —_]
=z high-memx2 high-mem high-memx4 high-cpu

small high-c pu-xI large extra-large
Instances

(b) CPU, memory, and disk as comparison parameters.

Fig. 3. Requests per Amazon EC2 template.

The rest of this paper focuses on the first approach (strict)
which considers a known set of minimum workload require-
ments that are to be migrated into a cloud.

IV. WORKLOAD REQUIREMENT ANALYSIS

One method to select the optimal number of templates relies
on the analysis of known server configurations. This option
requires an accessible set of representative configurations
which could be obtained from a couple of sources.

As previously discussed, the first source involves a doc-
umented set of workload requirements which typically are
created by an application architect. For example, if an architect
were to deploy a LAMP (Linux, Apache, MySQL and PHP)
workload to satisfy 2000 page views an hour they must first
allocate minimum resource requirements for each software
component and then overlay additional resources to meet the
usage of the application. These aggregated requirements can
be viewed as a representation of the exact server configuration
required to meet the workload’s needs. In the traditional IT
delivery scenario this request is passed to the IT provider who
then proceeds to procure and configure the necessary hardware
components.

The second source involves examining an existing set of
deployed servers to discover their resource allocations. This
approach is advantageous as it allows actual representations
to be used versus idealistic definitions from the architect.

M Strict(cpu,mem) B Flexible(cpu,mem) [Strict(cpu,mem,disk) B Flexible(cpu,mem disk)
3500

3000
2500
2000
1500
1000
= .
0 [ey S—
CPU

Memory Disk
Server Requirement

Matching Factor (%)

Fig. 4. Matching factor for server requirements (i.e. CPU, memory, and disk)
against Amazon EC2 instances.

The downside is that it is more difficult to partition specific
workload requirements from the natural “accumulation” of
processes running on the server. This data may tend to over-
estimate the requirements for applications due to the practice
of allocating but rarely de-allocating resources.

The following section applies a clustering approach to data
gathered using the first source in an effort to find natural
resource groupings.

A. Geometric clustering

Given a set of server requirements, a natural way to identify
templates is to view the server requirements as points in
n-dimensions and apply standard clustering techniques such
as K-means clustering. However, before we can apply any
such clustering techniques we need to first define a similarity
function between the requirements to quantify how similar
(or close) two given requirements are. If we view the three
attributes of server requirements, CPU, memory, and disk,
as coordinates in a 3D space, then similarity can be defined
as the Euclidean distance between any two points in this
3D space. But, such an Euclidean distance would give equal
weights to all the attributes and discard the following two
important properties of the data set: (i) the typical values for
disk attributes are 10 times higher than that of the memory
and (ii) the dollar cost for 1 GB of disk is 10 to 15 times
smaller than 1GB of memory.

Values for each attribute have been normalized as follows:
from each value we subtract the mean and divide it by
the mean absolute deviation. This approach handles issue (i)
above and provides a set of values scaled between [0, 1]. This
normalization does not handle issue (ii) which is addressed
in the following section. We performed such a normalization
and then applied K-means clustering for a range (2 to 25)
of clusters. In each clustering trial, we tried 10 randomly se-
lected starting cluster-centers. We did not find any meaningful
clusters which was counter to our initial intuition. Digging a
bit deeper we found that the data does not have any natural
clusters. To illustrate this nature of the server requirements
we show in Figure 5 the memory and CPU attributes of
the server requirements. It is easy to observe that there is
a weak correlation and there are no strong clusters present
in the data. This lack of any natural clusters is also reflected
when we consider all the three attributes (CPU, memory, and

Memory vs. cpu requirements of server requests.
Amazon's instance type data overlayed in red diamonds

o + @ + # + + +
[2]
@
B~ + +
>
o
2
T © + + H o+ +
[}
>
S
o
D o - ++ + + +
—
o
]
S v HE + + + 0+ + + +Heo
S
(¥}
—
S o o + + + + +
o
[0}
—
2~ JHeHHHEGE +++ + HO + +
O

- JHe+++ + + + + + +

T T T T T T T T
0 5 10 15 20 25 30 35

Memory (GB) requirements of server requests

Fig. 5. Memory vs. CPU scatter plot.

disk) together. As reference points we included in Figure 5 the
CPU and memory attributes of the Amazon templates in red
diamonds.! This finding also supports an earlier question with
respect to the validity of scaling resources of small, medium,
and large templates in unison. If such a uniform scaling of the
three attributes is valid then the scatter plot would have a clear
trend line and show a positive correlation between values.

To summarize, K-means style clustering does not help in
identifying templates due to two important reasons. First, there
are no natural clusters in the data—the server requirement
values for the CPU, memory, and disk attributes are widely
spread out. Second, using Euclidean distance to quantify
similarity between server requirements completely ignores the
relative dollar cost differences between the attributes. In the
next section, we propose a scheme that overcomes these two
shortcomings.

Overall this was a surprising result. We initially expected to
see clear clusters in the data which would support the notion
of few, well defined templates. We found the fact that there
was poor correlation between all three resources especially
interesting and counter intuitive.

V. TEMPLATE SELECTION CONSIDERING COST

This section, which embodies the core of the CloudAffinity
framework, presents a cost aware clustering scheme to directly
select a small number of templates to satisfy the server
requirements. It also provides techniques that can be used by

I'To illustrate the structure of the data, we have omitted one Amazon tem-
plate (high-mem-x4) whose large values (CPU=8, memory=26, disk=66.80)
skew the plot and compress all the values to the left.

a cloud provider to analyze the trade-offs between the number
of templates, number of server requirements satisfied, and cost
of satisfying these requirements.

The key idea behind the cost aware clustering is to first
calculate a minimum cost match for each server requirement.
This process provides a set of most frequently used templates
which are used to determine the final, smaller, set of templates
and the total cost. The CloudAffinity framework currently
considers CPU, memory, and disk size as server requirements.
These parameters are limited to the current state of cloud and
represent an approach that is applicable to today’s industry
state of the art. Although the additional parameters (such
as network) were not considered, CloudAffinity can handle
additional parameters to generate template sets.

Figures 6 and 7 present the outline of the cost aware
clustering scheme and its auxiliary functions respectively. The
selection of best templates is performed as follows:

1) We compute the minimum match for each server re-
quirement by matching CPU, memory, and disk to the
smallest values in the corresponding target lists. The
function £ indMinMatch in Figure 7 describes how the
minimum match is computed. Using the minimum match
for each server requirement also allows us to compute
the minimum cost. Such cost is a lower bound on the
cost for satisfying a server requirement request based on
the target CPU, memory, and disk values provided, and
is used later on to determine whether a request can be
satisfied at its minimum cost. We refer to these matches
as minimum cost match.

2) Given the minimum cost matches from the previous
step, we now proceed to derive a set of templates. A
template is a combination of the CPU, memory, and
disk values from the targets considered in the previous
steps. Note that a single template can satisfy more than
one server requirement request and some templates may
not be used to satisfy any request. The set of templates
that satisfy all the requests is computed by selecting the
set of unique templates from the matches computed in
the previous step. The function deriveTemplates
described in Figure 7 outlines the steps involved in
deriving the templates. For our set of requests and the
target resources, we found that a set of 89 templates is
sufficient to satisfy all the requests with minimum cost.

3) A natural way to summarize the derived templates is to
sort them by the number of requests satisfied by each
one. This is achieved in the next step and Figure 8 shows
the results graphically. Each bar represents a template
and the value of the bar (shown on the top) represents the
number of satisfied requests. The label of each bar shows
the CPU, memory and disk values of that template. It
is interesting to note that the top 10 templates satisfy
55% of the requests at minimum cost and the top 20
templates satisfy 71% at minimum cost. This seems
quite reasonable to have such large percentages of server
requirements met with minimum cost by a relatively
small number of templates. This might lead us to believe

// Values for cpu, memory, and disk used for the results
// reported in this paper. The proposed scheme can be

// directly used with any values for these attributes.

// targetCpulist = (1,2,4,8,12,16,32);

// targetMemList = (1,2,4,8,12,16,32,64,128);

// targetDiskList = (100,200,300,400,500,600,700,800,900,

// 1000, 1200,1400,1600,1800,2000);
// topKList = (5,10,15,20,25)

//

// Cost for one cpu, one GB of memory or disk

// CpuCost = 119.86 MemCost = 180.2 DiskCost = 1.34

// Selects the top k templates for a set of server

// requirement requests, target cpu, memory, and disk

// values, and values for (top) k.

SelectBestTemplates (requests, targetCpulist,
targetMemList, targetDiskList,
topKList) {

// for each request find the minimum cost match
[matches, globalMinCostList] =
findMinMatch (requests, targetCpulist,
targetMemList, targetDiskList)

// from the matches collect templates with at least
// one match and discard templates with no any match
[templates, numRequestsSatisfied] =
deriveTemplates (matches, globalMinCostList, requests)
// sort templates by number of satisfied requests
[sortedTemplates, sortedCount] =
sort (templates, numRequestsSatsified)

// for each k value, compute the matches
for (1 in 1 length (topKList)) {
topK = topKList[i]
// match requests to a set of top-K templates
[minCostMatches[i], higherCostMatches[i],
unsatisfied[i]] =
calcCostForTopTemplates (sortedTemplates[1l:topK],
globalMinCostList)

(top)

Fig. 6. Pseudo code for selecting the top k templates. Figure 7 presents the
auxiliary functions.

that there is a “cloud appropriate” subset of workload
within the overall data set.

4) With the sorted set of templates, we can now do inter-
esting trade-off analyses. To start with, we can as the
following questions: “If we consider only the top (most
used) 10 templates, how many requests are satisfied?
And, how many of them are satisfied with minimum
cost? How many with higher cost?” The next step in
the scheme computes the answers to above questions
for a set of most used templates. It takes as input
the & values {5, 10, 15,20,25} (from topKList) and
computes the matches for each top k templates. The
function calcCostForTopTemplates described in
Figure 7 shows how the matching is done. The results
are presented in Figure 9.

The results summarized in Figures 8 and 9 provide a basis
for a private cloud provider to quantitatively analyze a set of
server requirements, understand the most used templates, and
choose an optimal set of templates.

// Cost for one cpu, one GB of memory or disk

// used in our analysis

// CpuCost = 119.86 MemCost = 180.2

//

// for each request find the minimum resource match

// and compute the minimum cost for it

findMinMatch (requests, targetCpulist,
targetDiskList) {

DiskCost = 1.34

targetMemList,

int numRequests = numRows (requests)
int matches[numRequests] [3]
for (1 =1 numRequests) {

// minMatch() finds the minimum value from the targetList
// that satisfies the request. Note that the satisfying
// resource value is greater than or equal to the request

matches[1][1] = minMatch (requests[i][1], targetCpulist)
matches[1][2] = minMatch (requests[i][2], targetMemList)
matches[i] [3] = minMatch (requests[i][3], targetDiskList)
cost[i] = matches[i][1l] * CpuCost +

* MemCost +
* DiskCost

matches[1] [2]
matches[1] [3]
}
// returns a pair of lists
return ([matches, cost])
}

// Given a list of matches find the set of unique
// templates that match all the requests
deriveTemplates (matches) {

for (i = 1 to numRequests) {
// create a string that encodes the matching templates
matchStrList[i] =
paste (matches[i] [1],

matches[i] [2], matches[i] [3]

}

// findUnique returns a set of unique values in
// matchStrList and for each unique value how many times
// it occurs in matchStrList

[templatesList, countList] = findUnique (matchStrList)
return ([templatesList, countList])
}
// Input: templates, requests and their cost

// for minimum cost match

// For a given set of templates check if a request can be

// satisfied, and if so, compute whether it can be satisifed

// with min cost or higher cost. Also, compute the number of

// unsatisfied requests.

calcCostForTopTemplates (templates, requests,
globalMinCostList) {

int minCostMatches = higherCostMatches = unsatisfied = 0;
for (i =1 numRequests) {
// given a set of templates, minCostMatch() finds a
// minimum cost match for a request. Returns -1 for index
// and a 0 for cost when a match is not found

[matchIndex[i], cost[i]] =
minCostMatch (requests[i], templates)
if (matchIndex[i] == -1) {

unsatisfied = unsatisfied + 1

} else if (cost[i] > globalMinCostList[i]) {
higherCostMatches = higherCostMatches + 1
} else {

minCostMatches = minCostMatches + 1
}

}

return (

}

[minCostMatches, higherCostMatches, unsatisfied])

Fig. 7. Pseudo code for auxiliary functions used to calculate top & templates.

A. Cost vs. number of templates: trade-off analysis

Table II shows a summary of the total cost of satisfied
server requirements for a given set of top k£ templates. Also,
the last column presents the sum of the extra cost (higher
cost - minimum cost of a request) incurred by satisfying some

TABLE I
TOTAL AND EXTRA COST FOR SATISFYING REQUESTS WITH TOP k
TEMPLATES

Top k Total cost ($) Extra cost as a percentage
of total cost
5 341,648.20 3.6
10 933,924.80 10.6
15 882,220.50 5.4
20 1,541,252.80 19.0
25 1,413,980.00 8.4
89 1,676,451.00 0.0

server requirements using the top k£ templates. The extra cost
is shown as a percentage of the total cost.

The results summarized in Table II enable a cloud provider
to do quantitative and systematic trade-off analysis between
the number of templates and the cost gain/loss. For example,
consider the comparison of top 10 and top 15 templates (rows
2 and 3 of Table II). We observe that increasing the number of
templates from 10 to 15 yields only a small (5%) reduction in
extra cost, which may not be a significant savings when com-
pared to the extra management overhead of the 5 additional
templates. Regarding execution times, CloudAffinity is able
to generate template lists in a couple of minutes and would
be practically applied in industry on a one-time basis when
assessing customer workloads.

VI. RELATED WORK

Matching applications’ server requirements to available
resources has long been investigated [4], [5]. Virtualization
has simplified this task by allowing users and system admin-
istrators to create VM instances and images that encapsulate
the whole software stack required by applications to run [6].
Repositories and catalogs for VM images have been proposed
[7], [8] with the main goal of storing images and allowing
users and systems to quickly retrieve them during service
deployment. As discussed beforehand, several issues arise as
the number of virtual resource templates grows: (i) the time for
users to select a template increases; and (ii) patching images
can become a challenge [9], [10].

These issues have been addressed in different ways. The
Open Virtualization Format (OVF) attempts to provide a
hypervisor-neutral format for images that can simplify their
packaging, distribution and management [11]. Filepp et al.
[3] tackle the problem of choosing an image for a target
server by selecting the image that yields the smallest software
migration cost (i.e. the cost for installing the required software
and removing software that is not necessary). SOAVM [12]
provides a framework for automatic software configuration
(i.e. downloading and installation). Moreover, it maintains
basic images that are customised with the proper software
when VMs are instantiated.

Existing work has also proposed enhancements to current
repositories by provisioning semantic descriptions of the con-
tents of images [1]. Mirage [8] eases image capture and

Templates versus number of requests satisfied

(top 20 and 10 templates satisfy 71% and 55%

of requests at minimum cost, respectively)
88
90

70 61 59
50
30 1

|
S Q.
S
R,

45 45

26 26 24 2
317]7‘612121111111099

\JKJHHHHHH | N N N e W

S P RPN S ®
@% u%,\)m% u%,»m&m Q’\,\Q%Qb:&%ﬁp’\;& S S S
AR A A P VN N NN

Templates cpu-memory-disk

[
o

Number of requests satisfied
=

Fig. 8. Templates and the number of server requirements satisfied by each
of them. Data for the most used (top) 20 templates are shown

Percentage of server requests satisfied by top K templates

100 Unsatisfied
10.6 8.9
o |
0 26.1 26.1 145
80 18.2 : i Satisfied at
| higher cost
70 553 94
18.5 4 Satisfied at
60 min cost
50 100
4.8,
40
| 712 76.6
30 554 '
20 39.9
al n
0
top5 topl10 topl5 top20 top25 top89

Fig. 9. Each bar shows for a given top k templates, what percentage of the
747 requests are satisfied at minimum cost, higher cost and unsatisfied. top89
represents the set of all templates needed to satisfy all the server requirements
at minimum cost.

deployment by storing them in a format that allows them
to be compared with one another, also attempting to provide
semantic search on the available images [13]. In addition, it
maintains a tree that describes how an image has derived from
other images. There are also attempts to minimize the time
for deploying VM images on their respective hosts through
several techniques such as delta deployments [8] and VM
image caches [14].

The cost of borrowing resources from a cloud provider to
serve an organization’s or Grid’s demands using their proposed
templates has been investigated [15], [16], [17]. Moreover,
Mao et al. [18] point out the challenge of selecting virtual
resource templates and propose techniques for scaling an
application on a cloud. Dastjerdi et al. [19] propose a service
that matches OVF instances provided by users to appropriate
offerings of cloud providers. However, to the best of our
knowledge the previous work does not focus on identifying
the set of virtual resource templates that satisfy the largest
number of user requests.

VII. CONCLUDING REMARKS

This paper evaluated the resource waste caused by limited
VM templates and analysed how well a workload of a real data
center would fit into the current set of Amazon EC2 templates.
In addition, it proposed a framework, termed as CloudAffinity,
which considers template costs, and analysed the cost-benefits
of having a few sets of templates that can satisfied a large
group of VM user requests.

We showed that standard methods, such as K-means clus-
tering, cannot be directly applied to select templates when
considering a real data center workload, where users have
various and unrelated hardware requirements. An interesting
result is that 89 templates are required to meet the server
requirements of 747 VM requests, hence showing that few
templates (i.e. small, medium, and large) may not be able
to satisfy a considerable number of requests. However, the
results also show that a group of 10 templates can meet most
of the requests, and by increasing the number of templates
after 10, the cost benefit is minimum, and represents a low
advantage for most customers. Therefore, the framework and
methods presented in this paper can assist cloud providers
to better analyse and determine the optimal set of templates
required to meet user demands. As a next research step,
we will incorporate in the CloudAffinity framework an on-
line refinement of the set of templates based on updates of
customer demands. We will also investigate improvements in
resource allocation enabled by CloudAffinity.

REFERENCES

[1] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala, “Opening black boxes: Using semantic information to combat
virtual machine image sprawl,” in ACM SIGPLAN/SIGOPS VEE, 2008,
pp. 111-120.

[2] G. A.etal., “RC2 - A Licing Lab for Cloud Computing,” IBM Research
Report, Feb. 2010.

[3] R. Filepp, L. Shwartz, C. Ward, R. D. Kearney, K. Cheng, C. C. Young,
and Y. Ghosheh, “Image selection as a service for cloud computing
environments,” in /JEEE SOCA, Perth, Australia, Dec. 2010, pp. 1-8.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

(16]

(17]
[18]

[19]

M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor — a hunter of idle
workstations,” in 8th International Conference of Distributed Computing
Systems, San Jose, USA, Jun. 1988, pp. 104-111.

M. Siddiqui, A. Villazén, and T. Fahringer, “Grid Capacity Planning
with Negotiation-Based Advance Reservation for Optimized QoS,” in
ACM/IEEE Supercomputing 2006, 2006, p. 103.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SOSP 2003, New York, USA, 2003, pp. 164-177.

S. Ostermann, R. Prodan, and T. Fahringer, “Extending grids with cloud
resource management for scientific computing,” in IEEE/ACM Grid,
Banff, Canada, Oct. 2009, pp. 42-49.

G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang, “Virtual
machine images as structured data: the mirage image library,” USENIX
HotCloud 2011, Jun. 2011.

T. Garfinkel and M. Rosenblum, “When virtual is harder than real:
Security challenges in virtual machine based computing environments,”
in 10th USENIX HotOS, Berkeley, USA, 2005, pp. 20-20.

W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala,
“Always up-to-date: Scalable offline patching of vim images in a compute
cloud,” in ACSAC 2010, New York, NY, USA, 2010, pp. 377-386.
“Open virtualization format white paper,” DMTF, Jun. 2009.

Z. Cheng, Z. Du, Y. Chen, and X. Wang, “SOAVM: A service-oriented
virtualization management system with automated configuration,” in

IEEE SOSE ’08, Jhongli, Taiwan, Dec. 2008, pp. 251-256.
M. Satyanarayanan, W. Richter, G. Ammons, J. Harkes, and A. Goode,

“The case for content search of VM clouds,” in Computer Software
and Applications Conference Workshops, Los Alamitos, USA, 2010, pp.
382-387.

B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution
and leasing using virtual machines,” in HPDC 2008, New York, USA,
2008, pp. 87-96.

M. D. de Assuncdo, A. di Costanzo, and R. Buyya, “Evaluating the cost-
benefit of using Cloud computing to extend the capacity of clusters,” in
HPDC 2009, 2009, pp. 141-150.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the Cloud: The montage example,” in ACM/IEEE
Supercomputing, 2008, pp. 1-12.

M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science Grids: a viable solution?”” in DADC’08, 2008, pp. 55-64.
M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in /[EEE/ACM Grid, 2010, pp. 41-48.

A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An effective archi-
tecture for automated appliance management system applying ontology-
based cloud discovery,” in IEEE/ACM CCGrid, Melbourne, Australia,
May 2010, pp. 104-112.

